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Abstract
A simple yet effective architectural design of radial basis function neural networks (RBFNN)
makes them amongst the most popular conventional neural networks. The current genera-
tion of radial basis function neural network is equipped with multiple kernels which provide
significant performance benefits compared to the previous generation using only a single
kernel. In existing multi-kernel RBF algorithms, multi-kernel is formed by the convex com-
bination of the base/primary kernels. In this paper, we propose a novel multi-kernel RBFNN
inwhich every base kernel has its own (local)weight. This novel flexibility in the network pro-
vides better performance such as faster convergence rate, better local minima and resilience
against stucking in poor local minima. These performance gains are achieved at a competi-
tive computational complexity compared to the contemporary multi-kernel RBF algorithms.
The proposed algorithm is thoroughly analysed for performance gain using mathematical
and graphical illustrations and also evaluated on three different types of problems namely:
(i) pattern classification, (ii) system identification and (iii) function approximation. Empiri-
cal results clearly show the superiority of the proposed algorithm compared to the existing
state-of-the-art multi-kernel approaches.

Keywords Pattern classification ·Function approximation ·Non-linear system identification ·
Neural networks · Radial basis function · Gaussian kernel ·
Support vector machine · Euclidean distance · Cosine distance · Kernel fusion

1 Introduction

Machine learning (ML) is an established field with a wide range of applications including
control engineering [5, 18, 24, 29], medical imaging [23, 35, 47], bioinformatics [26, 31, 41],
and design of forecasting systems [11, 19, 36, 48], etc. It has been successfully used for other
innovative applications as well such as in the design of cognitive communication systems
[6, 34] and powerful generative models for number of multimedia application [13, 27] . In
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ML, neural networks are considered to be an important category of tools being frequently
used. Therefore number of neural network architectures for example spiking neural neural
network (SPNN), multiple layer perceptron (MLP), convolutional neural networks (CNN)
and radial basis function neural network (RBFNN) has been proposed.

Due to its compact design and good noise tolerance RBFNN is extensively used in various
applications where computational complexity, and data availability is a constrain [4]. Several
advances have been proposed to improve its performance. For instance, to improve the param-
eter learning a variant of gradient decent has been proposed [24], instead of gradient descent
algorithms some researchers have used meta-heuristic algorithms to update kernel weights
and other network parameters [3, 4, 39, 46]. Aljarah et al. in [4], used bio-geography-based
optimization algorithm (BBO) [39]. Alexandridis et al. studied the effectiveness of particle
swarm algorithm (PSO) for updating weights of the RBFNN [3].

Recently researchers have successfully blendedRBFNNwith other established techniques
as well. For example [28, 44, 45], Yang et al. in [45] proposed an efficient method for the
selection of the centers using the conventional K-means clustering. However, unnecessary
points around cluster centers were removed during global K-means clustering using popu-
lation density method. This slight tweak in the selection procedure of the center, resulted
in faster convergence and more robustness. In [44], Wena et al. used Takagi-Sugeno (TS)
fuzzy model with the RBF neural network. The proposed designed is particularly useful in
environments with data loss, data distortion or signal saturation. It uses K-means clustering
for both selecting fuzzy rules and the centers of the RBFNN. Moreover, weighted activation
degree (WAD) is used to determine the firing strength of fuzzy node. Liu et al. [28] proposed
C-RBFNN (Cloud RBFNN) which uses the cloud theory in fuzzy mathematics to optimize
the activation functions. Thismodification allowsRBFNN to effectively express the fuzziness
and randomness of the user data such as social media data.

Some hybrid training options have also been recently explored. For instance in [8], Yao and
Kuo proposed to combine self-organizing map (SOM) based RBF with evolutionary algo-
rithms such as partical swarm optimization (PSO) and genetic algorithm (GA). This hybrid
approach for RBF outperformed conventional non-hybrid approaches. Another emerging
variant of RBFNN called spatio-temporal RBFNN, uses the concept of time-space orthogo-
nality to separately model the dynamics and nonlinear complexities [20, 36]. Additionally,
an adaptive Nelder Mead Simplex [12], based training method that simultaneously updates
weights and kernel width is proposed in [15].

1.1 Motivation and Contribution of this Research

RBFNN typically uses a single type of kernel lacking better generalization. This is because
practical learning problems often involve multiple, heterogeneous data sources. Hence, the
choice of kernel is heavily dependent on the problem at hand [1, 10]. For example, wavelet
kernel, due to its excellent local properties both in time and frequency domains, performs
better for some signal approximation and pattern classification problems, however due to lack
of prior knowledge choosing the best kernel for the given learning problem is a challenging
task. An alternative approach is to use multiple kernels to incorporate design flexibility and
generalization [7, 10, 42]. This approach has been successfully employed with other kernel-
based methods for instance in support vector machine (SVM) [40, 43]. The most widely used
approach to combine multiple kernels of different characteristics is convex combination i.e.
all participating kernels are combine linearly such that their coefficients are non-negative
and sum to unity [30, 40, 43]. Recently, some researchers have made successful attempts to
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combine multiple kernels in a nonlinear fashion e.g. Gu, Yanfeng, et al. in [14] showed the
effectiveness of combining multiple kernels using Hadamard product.

In the context of RBFNN, multi kernel approach is still an under-explored research area.
Fu et al. [10] were the first to introduce the multi kernel RBF-NN. They combined the
Gaussian kernel and the wavelet kernel using convex combination and adaptively tuned the
kernel coefficients using orthogonal least squares (OLS) algorithm. Later, Aftab et al. in [1]
and Khan et al. in [25] explored the area of multi-kernel RBFNN and designed an adaptive
multi-kernel RBFNN. Motivated from these works, we propose a novel muti-kernel RBFNN
architecture as a Coordinating RBF Neural Network (Co-RBFNN).

Conventional multi-kernel RBF architectures, use the concept of linear combination of
various primary kernels (Gaussian, cosine, wavelet etc) with either fixed or adaptive weights,
incorporating single degree of freedom [1, 10, 25]. In particular, the conservative choice
of the mixing parameters turns out to be the limitation of these conventional approaches.
In contrast, the proposed kernel fusion method uses matrix-based mixing weights allowing
each participating kernel to learn independently, thereby yielding better performance in most
cases. This learning approach of independent mixing weights, make our method novel and
unique compared to other contemporary approaches. The main contributions of our research
are as follows:

1. A multi-kernel RBFNN architecture is proposed that combines each multi-kernel in the
network with its own set of kernel parameters (local weights).

2. Graphical explanation of the algorithm is given to conceptually justify the origin of
improved performance.

3. A comprehensive mathematical analysis is performed to identify the convergence bound.
4. The proposed architecture is evaluated for three problems of estimation namely non-linear

system identification, pattern classification, and function approximation and extensive
comparative analysis is performed with the contemporary approaches.

The organization of the paper is as follows. In Sect. 2, a brief overview of existing multi-
kernel RBFNNs is proposed followed by the proposed Co-RBFNN in Sect. 3. Experimental
evaluation and comparative results are discussed in Sect. 4. Finally, the paper is concluded
in Sect. 5.

2 Multi-Kernel Radial Basis Function Neural Networks

2.1 Overview of the Architecture of the RBF Neural Network

RBFNN is a simple feed forward neural network that consists of only three layers i.e., an input
layer, a nonlinear hidden layer and a linear output layer. Fig. 1 depicts the architecture of an
RBFNN. Let X ∈ R

a×S representing an input dataset consist of S samples, and xs ∈ R
a×1

be the input vector representing a sample by a number of attributes, then the overall mapping
of the RBF network, f : Ra×1 → R

1×1, is given as:

ys =
K∑

k=1

wkφk(xs,mk) + b, (1)

where for all k, mk ⊂ M ∈ R
a×K , K is the number of neurons in the hidden layer of the

network, M ∈ R
a×K comprises of K number of mk ∈ R

a×1 vectors, each representing a
center point of the kernel of kth hidden neuron, wk is the synaptic weight connecting the
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1048 S. M. Atif et al.

Fig. 1 Architecture of the RBF neural network

kth hidden neuron to the output neuron, b is the bias term of the output neuron and φk is
the radial basis function of the kth hidden neuron. Without the loss of generality and for the
sake of simplicity a single output neuron is considered. Conventional RBF networks employ
a number of kernels such as multiquadrics, inverse multiquadrics and Gaussian [16].

2.2 Overview of the Contemporary Multi-Kernel Approaches

Gaussian kernel is considered to be the most commonly used kernel:

φg(x,m) = exp

(
−‖x − m‖2

σ 2

)
, (2)

where σ is the kernel-width of the Gaussian kernel.
Recently, it has been argued that the cosine kernel offers complimentary information

compared to the Gaussian kernel [1]. It is defined as:

φc(x,m) = x.m
‖x‖ ‖m‖ + ε

, (3)

where, ‖| · ‖| is the L2 norm or Euclidean distance and ε > 0 is a small constant added to
avoid the indeterminant form of Eq (3).

In recent studies [7, 14, 40, 42], it is suggested that combining multiple kernels is more
efficient than using the kernels individually. Accordingly, a novel multi-kernel has been
proposed combining cosine and Gaussian kernels [1]:

φk(x,mk) = αgφg(x,mk) + αmφc(x,mk), (4)

where φg(x,mk) and φc(x,mk) are output of Gaussian and cosine kernels for kth hidden
neuron respectively and, αg and αc are their corresponding kernel weights. Further, there are
two constraints on αg and αc, i.e., 0 ≤ αg, αc ≤ 1 and αg + αc = 1. The common set of
kernel weights i.e., {αg, αc} for all multi-kernels and the above two constraints ensures that
the participating kernels will form a convex combination.

The new multi-kernel in (4) has shown some good results compared to the conventional
Gaussian kernel [1]. In this method, the fusion of the two kernels is manual and the their
weights αg and αc are adjusted in a hit-and-trial manner. Without any prior information, a
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common practice is to assign equal weights to the two kernels i.e. αg = αc = 0.5. To resolve
this issue, in [25], an adaptive framework is proposed for automatic fusion of kernels. This
approach tunes the kernel weights at every iteration n to minimize error [25]:

φk(x,mk) = αg(n)φg(x,mk) + αc(n)φc(x,mk). (5)

In [25], both the synaptic weights of hidden neuron and kernel weights are updated using
the conventional gradient descent algorithm. This method has shown improvement over the
fixed multi-kernel methods [1].

3 The Proposed Coordinating RBFNN (Co-RBFNN)

Motivated by [25], we argue that this adaptive scheme can be further improved by introducing
a separate set of kernel weights for each participating kernel. Therefore, the kth kernel of
the given RBFNN that consists of two participating kernels will take the form:

φk(x,mk) = αgk (n)φg(x,mk) + αck (n)φc(x,mk), (6)

where φgk (x,mk) and φc(x,mk) are the Gaussian and cosine contributors of the kth multi-
kernel with the correspondingweights αgk (n) and αck (n) respectively. Eq (6) can be rewritten
as:

φk(x,mk) =
L∑

l

αlk (n)φlk (x,mk), (7)

where, l ∈ L and L = {g, c} is the set of participating primary kernels in the kthmulti-kernel.
So, φlk is the lth participating primary kernel of the kth kernel and αlk is its mixing weight.

Eq (7) can be easily extended for more than two kernels. However, we restrict ourselves
to only two kernels for the sake of simplicity. The overall mapping at the nth iteration can
be written as:

y(n) =
K∑

k=1

wk(n)

( ∑

l∈{g,c}
αlk (n)φlk (x(n),mk)

)
+ b(n), (8)

where K is the number of centers (multi-kernel) of the network, mk ∈ R
a×1 is the center

of the kth multi-kernel, wk is the synaptic weight connecting the kth hidden neuron to the
output neuron, b is the bias term of the output neuron, φlk is the lth participating kernel of
kth multi-kernel and αlk is the corresponding kernel weight.

Eq. (8) can be written as:

y(n) =
∑

k,l

(
wk(n)αlk (n)

)
φlk (x(n),mk) + b(n)

=
∑

k,l

wk,l(n)φlk (x(n),mk) + b(n),

(9)

where, k = 1, 2, . . . , K , l ∈ {g, c} and wk,l(n) = wk(n)αlk (n) is the substitute form of the
weight of lth participating kernel in the kth multi-kernel. x(n) is a sample obtained from X
at nth iteration.

It is evident from Eq (9) that there is no explicit need to maintain kernel weight of
each participating kernel of a given multi-kernel. Instead, each participating kernel φlk has
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1050 S. M. Atif et al.

its own corresponding weight wk,l(n). In other words, our proposed multi-kernel RBFNN
architecture, consisting of K hidden neurons and L participating kernels (in our case L = 2),
may be unfolded into a simple RBFNN architecture consisting of K × L centers (hidden
neurons), such that there are L sets of K hidden neurons and each of that set employs one of
the L different kernels.

In matrix form, Eq (9) can be written as:

y(n) = φᵀ(n)w(n), (10)

where, w(n) = [b, wg1(n), wg2(n), · · · , wgK (n), wc1(n), wc2(n), · · · , wcK (n)]ᵀ and φ(n)

= [1, φg1(x(n),mk), · · · , φgK (x(n),mk), φc1(x(n),mk), · · · , φcK (x(n),mk)]ᵀ are weights
and kernel vectors respectively and [·]ᵀ is the vector transpose operation.

3.1 Weight and Bias Update Rules

The update rule of the synaptic weight wk,l(n) at (n + 1)th iteration can be given as:

wk,l(n + 1) = wk,l(n) + Δwk,l(n), (11)

Δwk,l(n) = −η
∂	

∂wk,l(n)
, (12)

where, η is the learning rate, and 	 is the mean-square-error (L2) loss function defined as:

	 (w, b) = 1

N

N∑

n=1

(d(n) − y(n))2. (13)

The above loss function can be minimized by solving for the instantaneous error, consid-
ering instantaneous error function E(n) i.e.,:

E(n) = E (w(n), b(n)) = 1

2
(d(n) − y(n))2, (14)

where d(n) is the desired output, y(n) is the actual output at the nth iteration and e(n) the
instantaneous error.
Using the chain rule of differentiation for the cost function in Eq (14) yields:

∂E(n)

∂wk,l(n)
= ∂E(n)

∂e(n)

∂e(n)

∂ y(n)

∂ y(n)

∂wk,l(n)
, (15)

which upon simplification of the partial derivatives in Eq (15) results in:

∂E(n)

∂wk,l(n)
= −e(n)φlk (x(n),mk). (16)

Using Eq (12) and Eq (16), the update rule in Eq (11) will becomes:

wk,l(n + 1) = wk,l(n) + ηe(n)φlk (x(n),mk), (17)

similarly, the update rule for bias b(n) can be shown to have the form:

b(n + 1) = b(n) + ηe(n). (18)
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3.2 Training Algorithm

For the training of the proposed network, the steps of the algorithm outlined in Table 1 are
followed. Define the inputs, X ∈ R

a×S , M ∈ R
a×K (where the columns are the centers

of the K multi-kernels) the initial weight matrix Winit ∈ R
K×L , initial value of bias b, the

learning rate η > 0 and T number of epochs for training. The algorithm yields a weight
matrix W ∈ R

K×L as output. Conventional stochastic gradient descent is used to update the
weight matrix W ∈ R

K×L independently using each of the S training samples in each of the
T epochs.
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3.3 Illustrative Explanation of the ProposedMethod

In this subsection, we consider an illustrative example depicted in Fig. 2. The task is to
classify a test point. It is illustratively proved that a primary kernel (which is a Gaussian or a
cosine kernel in this example) fails to effectively discriminate the given test point. In contrast,
our proposed solution effectively maps the given test point to its true class. This illustration
therefore serve to demonstrate the superiority of the proposedmethod. For the purpose of this
illustrative case-study, no assumptions were made except the choice of a highly challenging
test point to prove the efficacy of the proposed algorithm for difficult cases.

As depicted in Fig. 2, we consider a challenging binary classification problem, inwhich the
only tunable parameters are the kernel mixing weights. We have four center points obtained
using a clustering method such as K-mean clustering (or any other method) representing
two classes namely Class A and ClassB. As shown in Fig. 2, Center1A and Center2A
are the representative points of Class A and Center1B and Center2B are the represen-
tative points of ClassB respectively. Let’s consider a test sample T est PointA such that
dc1A, dc2A are Euclidean distances from T est PointA to centers Center1A and Center2A
respectively whereas dc1B , dc2B are Euclidean distances of test sample T est PointA from
centers Center1A and Center2A respectively. Similarly, ac1A, ac2A are angles of test sam-
ple T est PointA with centers Center1A and Center2A respectively whereas ac1B , ac2B
are angles of test sample T est PointA with centers Center1B and Center2B respectively.

Without loss of generality, weights of the model are set to unity. Now, the following
relationships hold on model at the time of presentation of test sample T est PointA.

dc1A = dc2B, (19)

dc2A = dc1B, (20)

ac1A > ac1B > ac2B > ac2A, (21)

Fig. 2 Illustrative explanation of the proposed RBF algorithm
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φc(T est PointA,Center1A) + φc(T est PointA,Center2A)

= φc(T est PointA,Center1B) + φc(T est PointA,Center2B). (22)

Let Ψ is the discriminative power of a classifier. For Gaussian and cosine kernel classifer,
their discriminative powers are respectively equivalent to:

Ψg = φg(T est PointA,Center1A) + φg(T est PointA,Center2A)

−(φg(T est PointA,Center1B) + φg(T est PointA,Center2B)), (23)

and

Ψc = φc(T est PointA,Center1A) + φc(T est PointA,Center2A)

−(φc(T est PointA,Center1B) + φc(T est PointA,Center2B)). (24)

Using (19) and (20), we get:

Ψg = 0, (25)

similarly, using (21) and (22), we get:

Ψc = 0. (26)

Since, both Ψg and Ψc are zero the probability that T est PointA belong to Class A is
equal to that of ClassB i.e. equiprobable using either Gaussian or cosine classifier. The
classification of T est PointA is therefore solely dependent on the value of the bias.

This lacking of correctly classifying a challenging cases such as T est PointA persists even
in RBF networks equipped with adaptive kernel fusion (Khan et al.) having global kernel
weights as its discriminating power Ψa for (Khan et al.) is defined as:

Ψa = αgΨg + αcΨc, (27)

where αg ∈ R and αc ∈ R are (global) kernel coefficients of Gaussian and cosine kernels
respectively.

Again for difficult cases such as T est PointA, it is verifiable that Ψa = 0
In contrast, the proposed method is not susceptible to such problems due to the novel

concept of local weights (kernel coefficient) of each kernel. The discriminative power Ψr of
Co-RBFNN can be written as:

Ψr = αCenter1A,gφg(T est PointA,Center1A)

+αCenter2A,gφg(T est PointA,Center2A)

+αCenter1A,cφc(T est PointA,Center1A)

+αCenter2A,cφc(T est PointA,Center2A)

−{
αCenter1B ,gφg(T est PointA,Center1B)

+αCenter2B ,gφg(T est PointA,Center2B)

+αCenter1B ,cφc(T est PointA,Center1B)

+αCenter2B ,cφc(T est PointA,Center2B)
}
, (28)

where αc,x ∈ R is the kernel coefficient for kernel of type x and center c such that x ∈ g, c
and c ∈ Center1A,Center2A,Center1B ,Center2B

It is evident that Ψr �= 0 as αCenter1A,g �= αCenter2A,g , αCenter1A,c �= αCenter2A,c,
αCenter1B ,g �= αCenter2B ,g and αCenter1B ,c �= αCenter2B ,c in general.
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3.4 Mean Convergence Analysis of Our ProposedModel

In this subsection, we mathematically prove that our proposed algorithm will effectively
converge provided that we strategically set the learning rate η less than λmax , the maxi-
mum eigenvalue of the auto-correlation matrix R. We assume that, for the Wiener filter, the
signal and (additive) noise are stationary linear stochastic processes with known spectral
characteristics or known auto-correlation and cross-correlation [17].

The weight update rules of our proposed model i.e. (17) and (18) in the matrix form can
be collectively rewritten as:

w(n + 1) = w(n) + ηφ(n)e(n), (29)

where η is the learning rate, w(n) is the weight vector of nth iteration and e is the error
between the desired and actual output signals i.e.

e(n) = d(n) − y(n). (30)

Let’s define the vector Δopt as the difference of our proposed model estimated weight
vector w(n) with the optimal weight vector wopt :

Δopt (n) = w(n) − wopt , (31)

where optimal weight vector wopt is that of Wiener filter obtained by solving the standard
equation of Wiener filter i.e.

P − Rwopt = 0, (32)

where P is the cross-correlation matrix between input signal tom hidden neurons (i.e. φ) and
desired output d, and R is the auto-correlation matrix of input signal to m hidden neurons
i.e. φ. Mathematically,

R = E
(
φ(n)φT (n)

)
, (33)

P = E
(
φ(n)d

)
. (34)

Substituting the value of e from (30) and subtracting wopt from both sides of (29), we
get:

Δopt (n + 1) = Δopt (n) + ηφ(n)
(
d − y(n)

)
. (35)

Substituting the value of y and w(n) from (10) and (31) respectively into (29), we get:

Δopt (n + 1) = Δopt (n) + ηφ(n)
(
d − φT (n)(wopt + Δopt (n))

)
. (36)

Taking expectation on both sides of (36) and rearranging few term, we obtain:

E
(
Δopt (n + 1)

)
= E

(
Δopt (n)

)
+ ηE

(
φ(n)d

)

−ηE
(
φ(n)φT (n)(wopt + Δopt (n))

)
. (37)

Further simplifying the above equation using (32), (33) and (34), we get:

E
(
Δopt (n + 1)

)
= E

(
Δopt (n)

)
− ηE

(
φ(n)φT (n)Δopt (n)

)
, (38)

After applying usual assumptions of Wiener filter [17], we obtain:

E
(
Δopt (n + 1)

)
=

(
I − ηR

)
E

(
Δopt (n)

)
. (39)
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Decomposing R using singular value decomposition (SVD) and further simplification
leads us to:

0 < η <
1

λmax
, (40)

where, λmax is the maximum eigenvalue of the autocorrelation matrix R.

3.5 Mathematical Analysis of the ProposedModel Co-RBFNN

In this subsection, we mathematically prove that our proposed solution is superior to the
adaptive kernel fusion [25]. We prove that the mean square error of our proposed solution is
always less than that of the adaptive kernel fusion [25]. During this mathematical analysis,
we made a usual assumption that the errors induced by the two models (i.e. our proposed
solution and adaptive kernel fusion [25]) are zero mean Gaussian noise.1

Lemma 1 Our proposed model has following relationship with adaptive kernel fusion (Khan
et al.) model [25]

yd = ya + ex , (41)

where, yd and ya are the estimated responses of our proposed model and adaptive kernel
fusion [25] respectively and ex is the noise. Mathematically, the estimated responses of the
two models ya and yd respectively are defined as:

ya = αwTφg + (1 − α)wTφc, (42)

and,
yd = wT

g φg(x) + wT
c φc(x), (43)

wherewg andwc are Gaussian and cosine weight vectors of our proposed model respectively
and,w and α are the weight vector and multi-kernel coefficient of adaptive kernel fusion [25]
respectively.

Prove: Consider our proposed model that estimates the desired response by minimizing
the least square error i.e.

d = yd + e, (44)

where, d is the desired response vector, yd is the estimated response of our proposed model
and e ∈ N (0, σ ) is the Gaussian noise of the proposed model.

Further, the following relationships hold among weight vectors w, wg and wc:

wg = αw + eg, (45)

wc = (1 − α)w + ec, (46)

where eg ∈ N (0, σg) and ec ∈ N (0, σc) are Gaussian noises and α is the kernel coefficient
of multi-kernel as defined in adaptive kernel fusion [25].

By adding (45) and (46), we get another relation i.e.

wg + wc = w + eg + ec. (47)

Adding and subtracting the term wg
Tφc(x) on R.H.S of (41), substituting the value of yd

from (43) and simplifying, we get:

d = wg
T (φg(x) − φc(x)) + (wg + wc)

Tφc(x) + e. (48)

1 Without loss of generality, the bias of the considered RBF models are assumed to be zero during the proofs
of the following lemma and its two corollaries.
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After substituting the value of wg from (45) and that of (wg + wc) from (47) into (48)
and simplifying, we obtain:

d = αwTφg + (1 − α)wTφc + eTg φg(x) + eTc φc(x) + e. (49)

After substituting the value of αwTφg + (1 − α)wTφc from (42), we obtain:

d = ya + eTg φg(x) + eTc φc(x) + e. (50)

Let the error term eTg φg(x) + eTc φc(x) be represented as ex , (50) becomes:

d = ya + ex + e, (51)

substituting the value of d from (44) into (51) and simplifying, we get:

yd = ya + ex , Q.E.D (52)

Corollary 1 The error term ex is mean zero Gaussian noise i.e. ex ∈ N (0, σx ).

Prove: Since adaptive kernel fusion [25] estimates the desired response d by minimizing
the least square error. Therefore, it is mathematically definable as:

d = ya + ea, (53)

where, ya is the estimated response and ea ∈ N (0, σa) is the Gaussian noise of the model
respectively and d is the desired response vector.

Substituting the value of d from (51) into (53) and simplifying, we get:

ex = ea − e. (54)

Since, ex is the difference of two zero mean Gaussian noises i.e. e and ea , ex is also a zero
mean Gaussian noise i.e. ex ∈ N (0, σx ), hence proved.

Corollary 2 Mean squared error of adaptive kernel fusion (Khan et al.) model [25] ‖ea‖22 is
always greater than or equal to that of our proposed model ‖ea‖22 i.e.

‖ea‖22 ≥ ‖e‖22. (55)

Prove: Substituting the value of d from (51) into (53) and simplifying, we get:

ea = e + ex , (56)

Since, ea ∈ N (0, σa) is the sum of two mean zero Gaussian noises i.e. e ∈ N (0, σ ) and
ex ∈ N (0, σx ). Hence,

σ 2
a = σ 2 + σ 2

x . (57)

This lead us to:
‖ea‖22 = ‖e‖22 + ‖ex‖22,

so,
‖ea‖22 ≥ ‖e‖22,

hence, proved.
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4 Experimental Results

In this section, we compare the performance of our proposed solution against two state-of-
the-art multi-kernel radial basis function neural network algorithms namely manually fused
multi-kernel proposed byAftab et al. [1] and adaptively fusedmulti-kernel proposed byKhan
et al. in [25]. All three algorithms are tested on pattern classification, system identification and
function approximation problems for standard performancemeasures. All tests are preformed
using Matlab R2017b on Intel CORE i5-2540M CPU @2.60GHz 4GB RAM. Results are
averaged over 100 independent random runs.

4.1 Pattern Classification

Pattern classification has several applications in security, industry, medicine and defense.
Examples include iris identification, speaker identification, fingerprint identification, statis-
tical pattern recognition of seismic data, and automatic medical diagnosis.

A well known Iris flower dataset [9] is selected for pattern classification problem. The
dataset consist of three classes (flower species). Each class has 50 samples and four attributes
i.e. sepal length, sepal width, petal length, and petal width. Forty samples of each class are
randomly selected for training where as remaining ten samples of each class are used for
testing.

The three RBF networks are trained with the following specifications. 16 neurons are
used with kernel centers selected using subtractive clustering [33] with influence factor 0.2.
Gaussian kernel width is set to unity. Learning rate is 5× 10−3. The weights as well as bias
are initialized randomly.

Fig. 3 shows MSE curves obtained during training. It is evident that our proposed archi-
tecture requires only 160 epochs to achieve mean squared error of −30.17 dB whereas the
other two algorithms require at least 240 epochs to reach the same MSE. Moreover, the
proposed architecture settles on an MSE of −35.39 dB after 2000 epoch whereas the other
two algorithms achieve a worse error of −33.33 dB after same number of epochs. Hence,
our proposed architecture outperforms other two state-of-the-art techniques both in term of
rate of convergence and steady-state error.

Classification accuracy achieved by different RBF algorithms on the given dataset is
shown in Table 1. During the training phase, the proposed architecture showed accuracy of
98.35% that is 0.64% higher than that manual kernel fusion [1] but 0.24% less compared to
the adaptive kernel fusion [25] that attain the accuracy of 98.59%. However, our proposed
approach attained the best testing accuracy of 99.13% comparing to 97.00% that of manual
kernel fusion [1] and 98.50% that of adaptive kernel fusion [25]. It established that the
proposed architecture is significantly tolerable to over-fitting. Moreover, our architecture is
even not susceptible to the initial weights (and the bias) as it exhibited the lowest standard
deviation of 0.12% (on the training data) and the second lowest standard deviation of 1.47%
(on the test data). Fig. 4 and Fig. 5 show the training and testing accuracy curves of the
three approaches respectively. Our proposed architecture exhibited better training accuracy
from the start thus achieved the training accuracy of 95.67% at 100 epoch whereas the other
two algorithm achieved 92.84% only at 100 epoch. On testing data, the manual kernel fusion
[1] initially exhibited the best accuracy precisely 96.5% at 100. But, our proposed approach
became the best at 600 epoch and marked the best steady-state accuracy of 99.27% at 2000
epoch comparing to that 98.27% by adaptive kernel fusion [25] and 97.23% bymanual kernel
fusion [1].
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Fig. 3 MSE curves of different RBF algorithms on Iris Flowers dataset

Table 1 Classification accuracy (in %) of Iris Flowers dataset obtained by different RBF algorithms

Method Training mean±std Testing mean±std

Manual Fusion (Aftab et al.) 97.71±0.61 97.00±1.01

Adaptive Fusion (Khan et al.) 98.59±1.12 98.50±4.68

Co-RBF (Proposed) 98.35±0.12 99.13±1.47

Sensitivity and specificity are also two important performancemetric to analyze a classifier
for its biasedness of a classifier. Sensitivity and specificity of different algorithms are tabulated
in Table 2 and Table 3 respectively. Our proposed algorithm exhibits the best sensitivity of
97.50% and 100% on Versicolor and Setosa classes respectively during training and that of
100% and 100% onVirginica andVersicolor classes respectively in testing phases.Moreover,
the sensitivity obtained by the proposed algorithm for all three classes are very close to each
other in the range of 0% to 0.35% in testing phase showing unbiasedness of the proposed
method.

During the training phase, our proposed algorithm shows the best specificity of 98.75%
and 100% on Versicolor and Setosa classes respectively. Whereas, it achieved the average
specificity of 98.75 on Versicolor class which is the second best specificity (i.e. 0.55% less
than that of the best specificity of 99.33% reached by adaptive kernel fusion [25]) on that
class. Specificity results of testing phase are also very similar. Our algorithm attained the
specificity of 100%on bothVersicolor and Setosa classes. However, it achieved the specificity
of 98.70% on Versicolor class which is the second best specificity on that class, 0.35% less
than the best (99.05%) attained by adaptive kernel fusion [25].
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Fig. 4 Training accuracy curves of different RBF algorithms on Iris Flowers Dataset
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Fig. 5 Testing accuracy curves of different RBF algorithms on Iris Flowers dataset
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Table 2 Average classification sensitivity (in %) of Iris Flowers obtained by different RBF algorithms after
training for 2000 epochs

Architecture Phase Virginica Versicolor Setosa
mean± std mean± std mean± std

Manual Fusion (Aftab et al.) Training 97.10±1.58 96.03±1.24 100±0.00

Testing 100±0.00 100±0.00 91.00±3.02

Adaptive Fusion (Khan et al.) Training 98.65±1.644 97.13±2.11 100±0.00

Testing 100±0.00 97.40±13.83 98.10±3.94

Co-RBF (Proposed) Training 97.55±0.35 97.50±0.00 100±0.00

Testing 100±0.00 100±0.00 97.40±4.41

Table 3 Average classification specificity (in %) of Iris Flowers obtained by different RBF algorithms after
training for 2000 epochs

Architecture Phase Virginica Versicolor Setosa
mean± std mean± std mean± std

Manual Fusion (Aftab et al.) Training 98.01±0.62 98.55±0.79 100±0.00

Testing 100±0.00 95.50±1.51 100±0.00

Adaptive Fusion (Khan et al.) Training 98.56±1.06 99.33±0.82 100±0.00

Testing 98.70±6.91 99.05±1.97 100±0.00

Co-RBF (Proposed) Training 98.75±0.00 98.78±0.18 100±0.00

Testing 100±0.00 98.70±2.20 100±0.00

Table 4 is showing Youden index of different algorithms on Iris Flowers dataset. It is a
popular index used to quantified the overall capacity of the model for pattern classification.
During the training phase, adaptive kernel fusion [25] attained the best indices of 0.9721,
0.9646 and 1.0000 for Virginica, Versicolor and Setosa classes respectively. Followed by
our algorithm with indices of 0.9630 (0.0091 less than the best), 0.9628 (0.0018 less than
the best) and 1.0000 for Virginica, Versicolor and Setosa classes respectively. Manual kernel
fusion [1] is in the last with indices of 0.9511, 0.9458 and 1.0000 for Virginica, Versicolor
and Setosa classes respectively.

During testing phase, our algorithm achieved the best Youden indices of 1.0000 and
0.9870 for classes Virginica and Versicolor respectively. However, it attained the second best
Youden index of 0.9740 on Setosa class (i.e. 0.0070 less than 0.9810 the best Youden index
reached by adaptive kernel fusion [25]). In the light of our simulation results of Virginica
and Versicolor classes, adaptive kernel fusion [25] is the second best (with Youden indices
of 0.9870 and 0.9745 for Virginica and Versicolor classes respectively) and manual kernel
fusion [1] is theworst (withYouden indices of 1.0000 and 0.9550 forVirginica andVersicolor
classes respectively) in term of Youden index during testing phase.

4.2 Function Approximation Problem

Function approximation is a way to describe the behavior of complicated functions using
available observations from the domain through ensembles of simpler functions. It has special
importance in several research domains like dynamic system modeling, nonlinear complex-
valued signal processing, and biological activity modeling etc [22, 38, 47].
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Table 4 Average Youden index of Iris Flowers obtained by different RBF algorithms after training for 2000
epochs

Architecture Phase Virginica Versicolor Setosa

Manual Fusion (Aftab et al.) Training 0.9511 0.9458 1.0000

Testing 1.0000 0.9550 0.9100

Adaptive Fusion (Khan et al.) Training 0.9721 0.9646 1.0000

Testing 0.9870 0.9745 0.9810

Co-RBF (Proposed) Training 0.9630 0.9628 1.0000

Testing 1.0000 0.9870 0.9740

For the function approximation problem, we consider the following non linear function
defined as:

f (x1, x2) = e(x21−x21 ), ∀ − 1 ≤ x1 ≤ 1 and − 1 ≤ x2 ≤ 1, (58)

For training phase, x1 and x2 were selected over the interval [−1, 1] with sampling spacing
of 0.2. Whereas for the testing phase, x1 and x2 were selected over the interval [−0.9, 0.9] at
the same rate. Hence, 121 and 100 samples were used for training and testing respectively.

All the RBF algorithms were initialized with the following specifications. Learning rate
was set to 1 × 10−3 and the Gaussian kernel spread was taken to be unity. All 121 hidden
neurons were configured by selecting training samples as centers for the kernel. Weights and
bias were initialized randomly for every run.

MSE curves of different RBF algorithms during training are shown in Fig. 6. Adaptive
kernel fusion architecture [25] showed the highest convergence rate for first 50 epochs but
then got stuck in a local minima and achieved the higher error of −20.5 db at 2000 epochs.
In contrast, our proposed architecture showed moderate but consistent convergence rate thus
achieved the minimum error −39.83 dB at 2000 epochs. Moreover, manual kernel fusion
architecture [1] exhibited moderate final convergence by attaining the error of −36.53 db at
2000 epochs.

Instantaneous error of our proposed architecture is well bounded between −0.1 and 0.1
whereas that of manual kernel fusion [1] is bounded between −0.15 and 0.15 and that of
Adaptive kernel fusion [25] is bounded between 4.5 and −3.0 as depicted in 8. Hence,
Adaptive kernel fusion [25] is the worst in term of instantaneous error among all the three
algorithms. As the result, the predicted output of our proposed architecture mapped the actual
output in the best manner as showed in Fig. 7.

Figures 9 and 10 are showing the error surfaces of different RBF algorithms on training and
testing data. Error surface of Adaptive kernel fusion [25] is quite spiky for both the training
and testing data i.e. bounded between 4.5 and −3.0 (training data) and 8.0 and −3.5 (testing
data) respectively. It indicates that the algorithm poorly approximated the given function. In
contrast, error surfaces of our proposed architecture are very flat bounded between 1.0 and
−1.0 in case training data and that −0.12 and −0.14 in case of testing data. This indicates
that given function is well approximated by Co-RBFNN.Manual kernel fusion is moderately
spiky with error bound of (−0.15, 0.15) for training data and that of (−0.22, 0.13) for testing
data. Thus, its ability of function approximation of the given function is average.
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Fig. 6 MSE curves of different RBF algorithms on function approximation problem
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Fig. 9 Error surfaces of different RBF algorithms on train data of function approximation Problem

4.3 Nonlinear System Identification

System identification/nonlinear system identification is a systematic approach to build math-
ematical models of dynamic systems using measurements of only the system’s input and
output signals. It has several applications in diverse fields ranging from wireless commu-
nication systems [2, 21, 37] to geo localization of mines [32] etc. It is considered to be a
highly challenging research problem in the domain of signal processing and can be effectively
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Fig. 10 Error surfaces of different RBF algorithms on test data of function approximation problem

Fig. 11 Nonlinear system identification using RBF neural network

addressed using neural networks [19]. Fig. 11 depicts a general systematic approach used by
the RBF neural networks for this purpose. For the evaluation of the proposed architecture,
we consider a first order non linear system defined by the following equation:

yt = 2u(t) − 0.5u(t−1) − 0.1u(t−2) − 0.7(cos(3u(t)) + e−|u(t)|), (59)

where, ut and yt are the system input and output respectively. The input signal is a unit
amplitude square wave of length 400 samples and 50% duty cycle. For model estimation,
during training phase a Gaussian noise of zero mean and 0.2 variance was added.

The following specifications are used for the RBF algorithms: (1) a learning rate of 1 ×
10−4, (2) the Gaussian kernel spread is set to 0.5, and (3) for 5 neurons, the centers are
selected asm = {−100,−50, 0, 50,−100}.

MSE curves of different RBF algorithms are depicted in Fig. 12. The proposed architecture
yields the highest convergence rate with a minimum error of 3.48 dB which is identical to
the manual and adaptive fusion method [1, 25]. Comparison of the actual and estimated test
signals for the different RBF algorithms is illustrated in Fig. 13. In an inset plot, it is evident
that our proposed algorithm estimates the actual test signal significantly better compared to
the other algorithms.
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Fig. 12 MSE curves of different RBF algorithms on system identification problem

Fig. 13 Estimated output of different the RBF algorithms on test data of system identification problem

5 Conclusion

In this paper, we proposed a novel multi-kernel RBF neural network architecture called Co-
RBFNN. The proposed kernel fusion method uses matrix-based mixing weights enabling
each (primary and sub-primary) kernel to learn independent weights. A graphical expla-
nation highlighting the underlying reasons for the improvement is provided along with a
detailed mathematical analysis. We demonstrated the efficacy of the proposed solution on
three important problems, namely: (i) Nonlinear system identification, (ii) pattern classifica-
tion and (iii) function approximation. The proposed algorithm has shown to comprehensively
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outperform the two state-of-the-art methods i.e. manual and adaptive fusion of kernels. For
the problem of pattern classification, the proposed framework achieved the lowest error floor
of −35.39 dB after 2000 epochs of training. For the testing phase the proposed Co-RBFNN
achieved a high classification accuracy of 99.13% (approximately) which compares favor-
ably with the contemporary methods. For the function approximation problem, our proposed
method converged to the lowest error of −39.83 dB after 2000 epochs. The convergence
rate of the proposed algorithm was also found to be better than the competing methods. For
the nonlinear system identification problem, the proposed Co-RBFNN algorithm exhibited
the fastest convergence rate achieving a minimum error of −3.48 dB. The unseen test signal
was more accurately estimated by the proposed approach compared to the contemporary
methods. MATLAB code for a sample problem can be downloaded from https://github.com/
Shujaat123/Robust_RBF.

The proposed novel approach enables independent learning of the mixing weights making
it superior compared to the contemporary approaches. However, one sophistication of the
current method is that it requires fine-tuning and pre-processing of data, which requires some
experience on behalf of inexperienced users. For such users, in future, we are interested
in designing a toolbox version that can facilitate the adaptation of the proposed method.
Additionally, it would be interesting to incorporate more sophisticated learning strategies
such as evolutionary methods and expanding the domain of our experiments to other more
practical problems.
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