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1. Introduction

Since the emergence of Internet, network parameter estimation has emerged to be an impor-
tant but challenging research topic whose goal is to infer the network parameters that cannot be
measured, such as end-to-end traffic volume and link delays. The significance of this research
domain is due to its vital role in the network engineering tasks such as capacity planning [1]], net-
work optimization [2[], expansion and monitoring of the network [3},14], congestion avoidance [5],
and anomaly detection [6]. In this paper, we focus on the network traffic matrix estimation prob-
lem that estimates the origin-to-destination traffic volumes using readily available routing matrix
and easily observable link traffic volume.

Consider a network which consists of m links and n origin-destination (OD) pairs. Let the
network be observed at time ¢, and let us denote x, € R} and y, € R’ the OD flow and link
flow vectors at time ¢, respectively. Further, let A € {0, 1}"" be the binary routing matrix of the
network such that A(i, j) = 1 if the routing path for the jth OD pair of the network passes through
the ith link of the network. Then, the following relationship between link flow vector y, and OD
flow vector x; holds:

¥, = Ax,. (1)

When the network is monitored for a time period 7', (I)) becomes:
Y = AX 2

where the link flow matrix ¥ € R™7 and traffic matrix X € R™ are formed by stacking the
column vectors y,’s and x,’s, fort = 1,2,...,7T.

The traffic estimation problem is the linear inverse problem of recovering X from A and Y
using (Z). More precisely, the goal is to estimate the OD flows x7.; at the future timestamps
T +i(fori=1,2,...) provided that the corresponding link flows y,;, the binary routing matrix
A, and the historical OD flows X € R™T and link flows measurements ¥ € R”T are given. It
is an ill-posed problem for all practical networks because the number of links in the networks
is typically much smaller than the OD pairs in the network, that is, m < n. Hence, finding a
solution for this problem is challenging because of the following two reasons:

(1) Due to the rapid advancement in the network technology and its abundance at an af-
fordable price, the size of modern networks are growing day by day [7]. Hence, the difference
between the number of links m and that of OD pairs » is becoming more and more prominent.

(2) Due to the increase in diversity of applications running on the modern Internet, the statis-
tical features of traffic are being further complicated [8]].

Dimensionality reduction techniques play vital rule in network traffic estimation problem.
It is because OD flows when observed over a period of time T, that is, the OD flow ma-
trix X € R™T, have diurnal cycles hence high-dimensional OD flows can be mapped to low-
dimensional latent flows using a dimensionality reduction technique such as the truncated SVD.
Let us consider the following low-rank approximation

X = PQ, 3)

where P € R and 0 € R*T are the left and right low-rank factors, and k < m < n is the
factorization rank. The matrix P encodes the spatial features of OD flows whereas Q encodes the
latent flows associated with the OD flow matrix X. Plugging (3) in (2)), we obtain

Y ~ APQ. “4)
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For a backbone Internet network, it can be safely assumed that the routing matrix A and spatial
feature matrix P remain stable over a long period of time. Thus, the highly ill-posed problem
of estimating OD flows using (2) is transformed with the help of dimensionality reduction into
the well-posed problem of estimating latent flows Q using (), given that P has been estimated
using historical data. In fact, given a new link flow observation y,, we can estimate x;, by solv-
ing ming cge |ly, — APgq,|l> whose solution is given by ¢, = (AP)'y, where (AP) is the (left)
pseudoinverse of AP € R™* and obtain x, = Pq,.

1.1. Related work

Several approaches have been proposed recently for traffic matrix estimation. Among them
dimensionality reduction techniques are the most popular and they are the focus of this paper.
The reason why dimensionality reduction techniques can be employed in network traffic estima-
tion is because (1) the backbone Internet traffic is highly concentrated, that is, most of the OD
flows use only few links of the network, and (2) OD flows have spatial and temporal similarities,
that is, nearby OD pairs have similar traffic and OD flows have diurnal cycles. Soule et al. [9]]
proposed to employ the singular value decomposition (SVD) [10], a well-known unconstrained
dimensionality reduction technique, to develop a traffic estimation model. A disadvantage of
their model is that it uses the Moore-Penrose pseudoinverse hence requiring an additional step
to suppress possible negative OD flows in the initial estimate of the model. In [11], Kumar et
al. proposed a traffic estimation model based on a relatively new unconstrained dimensionality
reduction technique known as CUR [12]. Its key benefits over SVD are mainly computational
efficiency and the interpretability of the low-rank factors that are directly derived from the given
data. Recently, Qazi et al. [13]] proposed to use the demand matrix and the traffic probability
matrix pair to transform the ill-posed traffic estimation problem into an equivalent well-posed
problem. However, the two proposed methods [11} [13] suffer from the limitations similar to that
of [9]] due to the use of the Moore-Penrose pseudoinverse.

Some researchers have shown keen interest in different neural network architectures to design
an effective model for traffic flow estimation. For example, Jiang et al. in [14] proposed to
employ feed forward neural network (FFNN) for traffic flow estimation modeling. The proposed
model BPTME takes link flows as input to FFNN whereas OD flows are yielded as output by
the network. The network is trained by back error propagation algorithm. Zhou et al. in [15]]
proposed an enhancement over BPTME [14] by injecting the routing information into the FFNN
as input for improved performance. Due to the architectural simplicity, FFNN does not scale
well with size, complexity and dynamics of traffic flows in the modern networks, hence Nie et
al [L6] proposed to a traffic flow estimation model based on deep belief network (DBN). In [17],
Zhao et al. used long short term memory recurrent neural network (LSTM-RNN). DLTMP [17]]
is found to perform better compared to the contemporary approaches in capturing spatiotemporal
dependencies of traffic flows because LSTM-RNN has cyclic connections over time.

Genetic or evolutionary algorithms are also utilized by some researchers in the context of
traffic flow estimation [18| [19]. These typically employ quantum-behaved particle swarm opti-
mization (QPSO). In [20], Lu et al. used multi-fractal discrete wavelet transform (MDWT) to
split traffic matrix into different frequency component then train the neural network to predict
low and high frequency component of traffic matrix. Kumar et al. in [21]] proposed a multi-view
subspace learning technique for traffic flow estimation. They proposed a novel robust approach to
obtain traffic flows from multiple traffic views yielded from rather inexpensive existing methods.

In this paper, we consider graph embedding and nonnegative matrix factorization (NMF)
to perform traffic flow estimation. Graph embedding has been successfully applied in various
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research fields such as computer vision and recommender systems. Interested readers may refer
to the recent survey paper [22] by Cai et al. on graph embedding for further details. Emami et
al. [23] have recently used graph embedding in the context of traffic flow estimation. Their
approach blends graph embedding with convolution neural network (CNN) for better traffic flow
estimation. Moreover, graph embedding has also been used by several researchers in combination
with matrix factorization. A seminal research work in the context of NMF along with graph
embedding is [24] by Cai et al. Roughan et al. [25] have used classical NMF in the scenario of
network traffic flow estimation. An autoregression based approach has been proposed recently
for capturing temporal dependencies in [26] by Yu et al. This autoregressive approach maps the
high-dimensional time series data into a low-dimensional latent time series. To avoid overfitting,
each latent timeseries is autoregressed independently. Further, the authors of [26] proved that
their proposed autoregressive approach has an equivalent graph representation, thus conventional
solvers used for graph embedding approaches can be used for this autoregression approach as
well.

1.2. Contribution and outline of the paper

Motivated from the benefits of NMF and autoregression approaches, and keeping in mind
the limitations of the existing traffic flow estimation models, we propose a novel model for traf-
fic flow estimation that is developed using a unique combination of NMF, autoregression and
orthogonality.

NMF is a constrained dimensionality reduction technique which ensures nonnegativity hence
is the natural choice for nonnegative network traffic flow estimation. It has already been success-
fully applied in many engineering applications, including but not limited to, computer vision,
signal processing [27]], hyperspectral sensing [28]], and background subtraction [29]. However
to the best of our knowledge, we are the first to conduct a comprehensive research with conclu-
sive results for the use of NMF in the context of network traffic flow estimation. Along with
the nonnegativity constraint, we also impose two additional constraints on the proposed model
for effectively capturing the spatial and temporal features in the traffic flows of the underlying
network. The key contribution of this paper is threefold:

(1) A novel multi-constrained nonnegative matrix factorization model is proposed for network
traffic flow estimation. The proposed model consists of a dimensionality reduction for cap-
turing spatial features of the network traffic flows with a novel combination of three addi-
tional constraints: a) nonnegativity, b) autoregression, and c) orthogonality. The autoregres-
sion constraint allows a dynamic learning of autoregression weights and an effective repre-
sentation of negative correlation between different OD flows which are prominent features of
the proposed model and are not available in the conventional graph embedding approaches.
The orthogonality constraint provides a distance preserving transformation from link flows
to latent flows enabling effective clustering of the given link flows according to their temporal
similarities.

(2) We propose an efficient training algorithm using the fast gradient method of Nesterov, while
we use a noise resilient initialization strategy that provides a deterministic seeding point to
the training algorithm [30].

(3) We illustrate the effectiveness of the proposed model and algorithm on two publicly available
Internet backbone traffic data sets, namely Internet2 [31]] and GEANT [32]. The empirical
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results show that the new model performs competitively with the current state-of-the-art
models.

The rest of the paper is organized as follows. Section [2| introduces the proposed model in
detail, highlighting the key components and their advantages along with differences with existing
approaches. Section [3| presents our proposed algorithm to tackle our new model. In Section [4]
the proposed model is extensively evaluated on two publicly available Internet traffic data sets,
and we show that our proposed model competes favorably with state-of-the-art algorithms.

2. New model for network traffic flow estimation

Let us formulate our proposed NMF-based network traffic estimation model for a network
that is monitored for time period 7', and consists of m links and n OD pairs. For this time period,
we are given X € R™7 and our goal is to construct a model allowing us to predict x; for t > T,
given A and y;; see Section[I} More precisely, we are given

the routing matrix A € R"™",
e the OD flow matrix X € R™7,
e a factorization rank k, and

e alagset L ={l:1 e Nand! <« T} with L = max(£). The lag set contains the indices /
indicating a dependency between the rth and (¢ — /)th time points, such as in autoregressive
models; see Section[2.2]for more details.

The model aims at computing (W, H, Q) by solving the following optimization problem:

WE]R“X/‘,HIEEET ,QeRkXL”X - WHI; (5a)
suchthat W >0,H >0,Q > 0, (5b)
H(p,1) = ) Q(p, DH(p,1 - 1)
leL
forl <p<k, L<t<T, (5¢)
Q(p,) >0,
A=AW, AA=I, (5d)

where |||l denotes the Frobenius norm, and the objective (5a) is the data fitting term of the
model. Let us discuss the constraints in the above model:

o (5Db) ensures nonnegative entries in W, H and Q.

o (5c) imposes that each entry H(p, t) of matrix H is the nonnegative weighted sum of entries
in the pth row of matrix H preceding H(p, ). This is motivated by the autoregression
model; see Section [2.2]for the details.

e (5d) defines a rank-k compact routing matrix A = AW € R™* that has orthonormal
columns as [ stands for a k X k identity matrix; see Section[?lf]for the details.
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In the context of dimensionality reduction, the low-rank matrices W and H are generally
called the basis and embedding (encoding) matrix, respectively. However, in the context of traffic
matrix estimation, W contains the spatial features of the OD flow matrix X in low dimension,
while H can be interpreted as a latent flow matrix defining the latent flows of the underlying
network.

In order to incorporate the constraints (5b)-(5d), we will resort to regularization so that the
constraints will not be strictly satisfied, but will tend to be. Using regularization, the optimization
task in (3)) can be formulated as a regularized NMF problem; see Section [3.1]

Let us now discuss the two key constraints in (3]), namely orthogonality (5d) and autoregres-

sion (3¢).

2.1. Orthogonality constraint

The constraint AT A = I can be equivalently written as W7 (ATA)W = I, which imposes
k? constraints on W € R™*. Note that A = AW is also nonnegative since A and W are, and
hence this orthogonality constraint requires the columns of A to have disjoint supports (that is,
the set of nonzero entries of the columns of AW do not intersect). This is related to the so-called
orthogonal NMF model; see [33] and the references therein. Hence this constraint requires the
support of the columns of W to be disjoint as well, imposing W to learn different features from
the data set. Equivalently, it implies that there is at most a single non-zero entry in each row of
Aand W.

Looking back at the model ¥ = AX ~ (AW)H = AH, this means that each row of Y is
approximated as an scaling of a single row of H [33]. Because we will not enforce (5d) strictly,
but use a regularization, our minimization problem is related to soft clustering, which can be
effectively used to capture diurnal similarity patterns (temporal dependencies) present in the link
count matrix Y.

Estimation of x,. Another salient aspect of the proposed model is that the estimate of an OD
flows, X, at time ¢, using the observed link count y,, is purely nonnegative. In fact, as explained
in Section[T] %, is estimated from the model

y, = Ax; = AWh, = Ah,,

and by taking h, = A'y,. We have A" = A" since A’ A = I, so that x, = Wh, = WAy, which
is nonnegative since A, A,y, > 0. This desirable feature of the proposed method is due to the
additional nonnegativity and orthogonality constraints, (5b) and (5d). To the best of the authors’
knowledge, this aspect has been missing in current state-of-the-art methods that generally employ
an additional step of setting negative entries to zero.

2.2. Temporal modeling using autoregression

The constraint defines k independent autoregression models for k timeseries of latent
flows corresponding to the k rows of the matrix H. For the pth timeseries of latent flows, the
autoregression model approximates every element in that timeseries as a weighted sum of its
previous elements, that is,

H(p,1) = ) Q(p,DH(p,t - .
el
When computing the weighted sum for an element H(p, f), not all elements preceding it are taken
into account but only the elements H(p,t —[) forl € L ={l: 1€ Nand! « T}, where L is the
6



lag set. In our model (5¢), all k autoregressive models share a common lag set £, but there are k
weight vectors gathered in the matrix Q. The lag £ have indices to indicate positive correlation
among OD flows. In particular, the OD flows x;_; and x, are assumed to be correlated if / € L.
Equivalently, this means that the OD flow vectors x;_; and x; are assumed to be correlated, since
our model assumes x; ~ Wh; for all z.

Modeling temporal dependencies via (5¢)), that is, using k autoregressive models sharing a
common lag set £, has several advantages over using a multivariate autoregressive model or
over conventional graph embedding approach:

1. It requires only k X | £| nonnegative weights in contrast to multivariate autoregressive mod-
els which require k X k X | | nonnegative weights. Hence, it is less prone to overfitting and
noise.

2. There is no restriction on defining indices of the lag set £. In contrast, conventional
graph embedding approaches (e.g. [24]) either use a lag set with few elements with short
dependencies, or require a prior knowledge of temporal dependencies which is generally
not available.

3. Unlike conventional graph embedding approaches (e.g. [24]]), weights of k autoregression
models (that is, 2) can be learnt dynamically.

4. Like conventional graph embedding approaches such as [24], each of the k autoregres-
sion models have an equivalent graph representation as explained in [26]]; see Figure[I[a).
Hence, the constraint can be incorporated into the data fitting term (5d) using exiting

Q(p,3) Q(p,3) -Q(p,1)Q(p,3)  -Q(p,2)Q(p,3) -Q(p,1)Q(p,3)

%

Q(p,1) Q(p,1) Q(p,1) Q(p,1) Q(p,1) Q(p,1) Q(p,1) Q(p,1)

(a) (b)

Figure 1: (a) A nonnegative weighted graph G defined by a typical graph embedding approach and associated to the pth
row of H. (b) A weighted signed graph G*R defined by the pth autoregressive model H(p, 1) = }cr Q(p, DH(p,t = 1)
associated to the pth row of H. In both cases the lag set is supposed to be £ = {1, 3}. In (b) gray colored arrows indicates
negatively weighted edges due to negative correlation between the two nodes. This figure is inspired from [26, Figures
2-3].

techniques like Laplacian regularizer.

5. Unlike conventional graph embedding approaches such as [24], the graph associated with
the pth autoregression model may contain negatively weighted edges to indicate negative
correlation between two nodes of the graph; see Figure[I[b) for an illustration.

We refer the interested readers to [26] and the references for more details.



3. Training our traffic estimation model (5)

In this section, we first provide our regularized NMF model to tackle (3)) in Section
In fact, in practice, because of noise and model misfit, it is not reasonable to strictly enforce
the constraints and (3d) (in fact, the orthogonality constraint could even make the prob-
lem infeasible), and hence it makes more sense to only penalize the solutions that violate these
constraints. Then we propose a fast gradient method to solve it in Section[3.2]

3.1. Incorporation of constraints into the model

Let us consider the following regularized NMF-based network traffic estimation model, which
replaces the constraints and (3d) in (B) with regularization terms:

min F(W,H,Q), (6)

WeRP* HeRT QeRM¥E

k
where F(W, H,Q) =||X — WH||> + A, Z T (wp, L, hy) + A7 (A),
p=1
where 7 (w,, L, h,) is the temporal regularizer to incorporate the constraint with w,, (resp.
hp) the pth row of Q (resp. H), and I (A) is the orthogonality regularizer to incorporate the
constraint (3d); see below for more details. The positive numbers 1, and A4 are the penalty
parameters for the regularizers 7 (w,, £, h,) and I (A) respectively and, w, and h, are the pth
rows of Q and H respectively.
Let us briefly discuss the two regularizers.

Orthogonality. The orthogonality regularizer 7 (A) in (6) corresponds to the orthogonality con-
straint (5d) and is defined as:
I(A) = || A" A~ ||

This is standard least-squares penalty for orthogonality constraints; see for example [34]].

Autoregression. We use the pth temporal regularizer 7 (w,,, £, h,) from [26]], which is equivalent
to the following Laplacian regularizer:

T
1 1
TpLhy) = 5> SRolHp.n) ~ Hpaolf + ShyDphy ()
1,0

where S8 € R™ is the weight matrix of the graph G* and D, € R™7 is the diagonal matrix
such that:

SAR(p 1+ d) = {zlw) Staazr ~Qp, DU, (= D). i 5(d) 6,
0, otherwise,

where 6(d) ={le LU{0}:1—d e LU{0}} and L = max(L), and

Dp(t,t)z( Z Q(p,l))( Z Q(p,l)[L<t+l$T]).

le LU{0} e LU{0}
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The graph Laplacian L)* € R™ is defined as:

T .
Shoi SoR, ) ifn =1,
—SaR(t1,12) otherwise.

LR, 1) = {

The first term in is standard for Laplacian regularizers of conventional graph embedding
approaches (see, e.g., [24]]), whereas the second term is specific to the autoregression model [26]
due to negative edges in the associated graph G*¥ indicating negative correlation between nodes;

see Figure

3.2. Fast gradient algorithm

In this section, we describe a training algorithm for the network traffic estimation model (6).
The algorithm is iterative and is based on block coordinate descent method, as most NMF algo-
rithms [35]. Such iterative algorithms require an initialization. The initial iterates are denoted
WO, HO and Q@ which we compute as follows:

1. For the given training OD flow matrix X and the rank of factorization k, the matrices W and
H are initialized by (W@, H®) = NNSVD-LRC(X, k) where NNSVD-LRC is an effective
initialization for NMF based on the SVD [30].

2. The pth row w,, of Q is initialized as the projection of the unconstrained solution:
0
W) =P (h,H]),
where P, (Z) is the projection onto the nonnegative orthant, that is,

Za, j), ifZa,j) =0,
0, otherwise,

P(2);= {

where P, (Z); ; denotes the entry of $..(Z) at position (i, j), H, ; is the (left) pseudoinverse
of H, and H,, € RPT is defined as:

H(p,(t—¢q), ifge LandL<t<T
0, otherwise.

7_{;)(‘]’ 1= {

Given the initial estimate (W, H®, Q®), Algorithm 1] further improves the solution via an
iterative process. We use a standard strategy in NMF, that is, alternatively updating the block
variables (W, H, Q). For each block, we use a first-order accelerated gradient descent method
with optimal convergence rate [36]; as done in [37] for the standard NMF model. In a nutshell,
such methods take a gradient step from an extrapolated sequence.

Algorithm|I]describes the proposed training algorithm in detail. It takes as as input the initial
values of three free parameters W, H® and Q©, the training OD flows X, the routing matrix
A, the rank of factorization k, the lag set £, and the maximum number of iterations 7,,,,. In each
iteration Algorithm [T]alternatively optimizes W, H and Q using the accelerated gradient method
as described in Algorithm 2] with help of Table[I] Note that we use a restarting mechanism in the
fast gradient method which typically performs well in practice; see the discussion in [38]].

Because accelerated gradient methods do not ensure the objective function to decrease at
every iteration, and because we optimize alternatively (W, H, Q2), we embed Algorithm E] with
a restarting scheme: if the objective function increases, the algorithm abandon the extrapolated
sequence and takes a standard gradient step, as done for example in [39]. This ensures the
objective function will decrease.
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Algorithm 1 Solving the traffic matrix estimation model @, MCST-NMF

Input: X is an n-by-T training OD flow matrix, WO HO and QO are the initial values for W,H
and Q respectively, ¢g™** is the maximum number of iterations, and 0 < ¢ < 1 is a threshold
for early stopping when the differences between two consecutive errors is small enough.

Output: Final values for W, H and Q and € solving (@)

1: Initialize: W = WO; H = HO; Q = QO: ¢(0) = ||X - WH]]%;
€nin = 0€(0); € = €™, g = 1;
2: repeat

3: W = FastGradientUpdate(X, W, H, Q));

4:  H = FastGradientUpdate(X, W, H, Q0);

5

6

7:

Q = FastGradientUpdate(X, W, H, Q0);
e(q) = |1X - WH|[: € = e(q - D-el@:q=q+1;
until ¢ < g™ and (e < 0 or € > €™")

Algorithm 2 FastGradientUpdate(X, W, H, Q)

Input: X is an n-by-T training OD flow matrix, W, H, and € are the three free parameters, gJ;
the maximum iterations for loop, and 1 > dg > 0 the minimum differences between two
consecutive errors w.r.t. initial error for early stopping before g** iterations respectively.

Output: Updated B by solving (6) for B (where B can be W, H or Q)

1: Initialize: C = B; B“*") = B; ag = a"rev) =1;q5=1;

2: Compute €\ as described in Table
3. eg)rev) — egurr);eanm — 6Be(prev);
4

B
: repeat
. ap = 1+ \/;kt;ﬁl .
6:  Compute L and VgF (W, H, Q) as described in Table E}

7. B=P,(C— LVsF(W,H Q)

(prev)
. C=B+% (B pem),
agp
9:  Compute e;"”") as described in Table
. _ (prev) (curr),
10: €p = €p —€p 5
11:  if eg < 0 then
12: C=Bag= 1" =",
13:  end if
1 ol = ap el = 7 qp = qp + 1

15: until gz < ¢3** and (eg < 0 or €5 > €;")

Choice of the penalty parameters. It is not an easy task to tune the two penalty parameters A,
and A4 for the regularization terms in @ Given the initial iterate (W@, H® Q) we will use

IX ~ WOHO
An =B , (82)
S ey = ) HIB
IX - WOHOI;
An=B L (8b)

A 5
[(A®)T A — 12
10



Table 1: Computations needed for Algorithm FastGradientUpdate(X, W, H, Q), depending on the updated variable, B
is either W, H or Q.

variable  quantity formula
Lp IWT Wil
W VsF(W,H,Q) 2WHH™ — XH") + 4A4(ATANA A - L)
(curr)
e IX = WHIZ
Lp \HHT|, + Z',‘,zl ILSR 2 + 1D ll2)
H Ve F(W, H,Q) 2WTWH - WTX) + ,H(p, :)((L;‘R)T + LjR)
(curr)
e IX - WHI}
LB(p,:) ||7'(p7"{;||2a for P = 1, 2, RN k.
0 Voo F(WW.H.Q)  2(Q(p, yH,H] — H(p,YH])
ey K H(p. ) = Q(p. YH, |3

where 8,84 € (0, 1]. This choice allows to balance the importance of the penalty terms com-
pared to the data fitting term, at initialization. Like other existing regularized models, e.g., [25],
the tuning of the penalty parameters, 8, and S# in our model, is a difficult task and typically
problem dependent (nature of the given network, noise level, etc.). In practice, a useful way
to tune parameters is to use cross validation (see, e.g., [40]), that is, use training sets to train a
model with different parameter values, and then select the values of the parameters that lead to
the best results on the test sets. For our problem, a value of 5, and 8.4 around 10-20% typically
works well in practice.

Handling the missing entries. It is usual that the traffic matrix X used for training a given traffic
estimation model contains missing entries, even in the presence of a good measurement sys-
tem [7]. To the best of our knowledge, all the existing state-of-the-art algorithms assume that
the training data is full and complete. To address the issue of an incomplete training dataset,
we propose two approaches. The first approach preprocesses the given training dataset to fill in
the missing entries using a weighted NMF model trained using a fast gradient method [41]]. The
second approach modifies Algorithm (1| using the expectation maximization strategy proposed
in [42].

Denoting M € {0, 1T the binary mask matrix so that M(i, j) = 1 if and only if X(i, j) is
observed, the second approach for handling the missing entries modifies Algorithm [I]to use the
data matrix X9 instead of X at iteration g, where X' @ jis defined as

XD = MoX+ (Lpxr — M) o (W(q—l)H(q—l))

where o is the element-wise matrix multiplication and 1,47 is the n X T all one matrix.

3.3. Estimation of future traffic flows
It is a common practice to improve the solution obtained by the traffic estimation model using
an Expectation Maximization (EM) iterative algorithm or iterative proportional fitting (IPF) al-
gorithm; see for example [9} [14,[15]]. In this paper, we use the EM approach from [43]] combined
11



Algorithm 3 Estimating OD flows

Input: A an m-by-n routing matrix, W the n-by-k matrix, the new observed link flow y,, g™,
and 7™ the maximum number of iterations for fast gradient descent and expectation maxi-
mization iteration steps respectively, 1 > 044, Oem; > 0 are the minimum difference between
two consecutive errors for early stopping before ¢"** and r™** iterations of fast gradient
descent expectation maximization iteration steps, respectively.

Output: Final estimated OD flow %, for timestamp .

Initialization for fast gradient steps:

1:
22 A=AW; h; = A"y,; v, = hy; hﬁ""") =h;
(prev) _ 1. . _ 1. (prev) _ 2.
3: 018{1 =ln= AL ed = ly, — Ahil3;
4 €' = 6galvilizs g = 1
5. repeat
1+ f4a2 +1
gd .
6: Agd = — 5

7. h; = P+(v, -V, G(y,, A, v,));
(prev)_y

S v b+ S (- ),

Qgd

rev
o e;?rr) = lly, — Avill3; €a = ez(:l:i = efgi:rr);
10:  if €9 < O then
rev

11: vi=hiag=1; ef;j”’) = e(g’; ),
12:  end if
13: (prev) _ . (prev) _  (curr), —a+1:

Py ey,  =e, 4= ;

14: ugt.il q< gm“x and (&g <.0 O €gq = .6;'1;”.

15: Initialization for expectation maximization steps:
16: X" = Why;y = y,;

17: €ei(0) = 0; € = €in; €, = 6emi||x(curr)”§; r=1,

i
emi

18: repeat
190 forj=1:1:ndo
. N XD v A )y (@)
20: x(j) = STUAG,)) “i=l Y AGK)x (k)

21:  end for

220 € = Ilx = X3 XD =X =+ 1
23 until 7 < 7% and (6, > €77)

24: X, = X;

with a fast gradient method, which is empirically found to be more effective than applying the
EM algorithm alone. Algorithm [3|provides the exact details of our traffic estimation procedure.

Once the proposed model (6) has been trained using Algorithm [T| over a given network, let
us explain how the new unobserved OD flows x, can be estimated as X, using the estimated pa-
rameters W, the routing matrix A, and the observed link flow y,; see Algorithm |3} The algorithm
first estimates the latent flow hﬁo) as Aly,; see Section It is then refined using a few steps of
projected fast gradient descent applied on the following minimization problem:

. . 2
min G(y,, A, b)) = min ||y, — Ah,l|;.
h,eRE h,eRE

Using the final estimated latent flow hﬁqf) after gyth iteration of the projected fast gradient
12



method, initialize x® = Wh'“ and y = y,. The rth iteration of EM for solving (T) is as
follows [43], 144]:

.(r_l) m A .. .
x() = N IOy,
ST A ) 4 Ty A x0T

where x(7)"~ and x(k)"~" are the jth and kth OD flows of x"~! respectively, y(i) is the ith link
flow of y and A(i, j) is the (i, j)th element of the binary routing matrix A. The output of the EM
algorithm after ryth iteration will be the final estimated OD flow £, = x7) and be the output of
Algorithm 3]

4. Experimental Results

In this section, we evaluate the performance of our proposed traffic estimation model which
we refer to as MCST-NMF (if the training dataset has missing entries, we use W-NeNMF [41]
by default to fill in the missing entries), otherwise as MCST-NMC when missing entries are
dealt with using EM. Moreover, we consider the following three state-of-the-art methods for the
performance comparison a) PCA [9], b) MNETME [15], and ¢) CS-DME [13]]. We consider
these state-of-the-art because they are all based on linear dimensionality reduction, like MCST-
NMEF; see Section [T}

Performance metrics. Given the true X the true OD flow matrix of a test data and the corre-
sponding estimated OD flow matrix X by an algorithm, we use the two performance metrics
SRE and TRE. They are row and column vectors of dimension » and T respectively. The ith and
rth elements of SRE and TRE vectors are defined as follows:

— 2
D=1 (Xi,t - X[,t)
SRE(i) = s 9)
Z;rzl Xzz,t
— 2
1 (Xi,t - Xi,t)
TRE(t) = . (10)
;l:l Xiz,z

The scalar SRE(P) is the normalized mean squared error of ith OD flow among all T test
timestamps, whereas TRE(?) is the normalized mean squared error of the rth test timestamp
among all n OD flows.

These two performance metrics, SRE and TRE, are widely used in the literature to measure
the performance a given network traffic estimation model. SRE(7) primarily describes how well a
given model is able to estimate a given OD flow i over a given time period 7. Hence, it provides
us the insight about the performance of the given model w.r.t. a given OD flow. In contrast,
TRE(#) describes the efficiency of a given model to estimate all OD flows in the given network
at a particular timestamp ¢. Hence, it provides us with the insight about the performance of the
given model w.r.t. a given timestamp.

Tables [2] and ] report the statistical properties of these two vectors, that is, of the SRE and
TRE on the test dataset.
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Datasets. The performance of different models is evaluated over two publicly available and
widely used Internet traffic datasets, namely Internet2 [31] and GEANT [32]. Internet2 (a.k.a.
Abilene) is the high-speed backbone network of US. It consists of 12 routers, 144 OD flows
and, 15 and 12 bidirectional internal and external links respectively. The topology of Internet2
network is depicted in Figure (a). The dataset [31] provides the measurements of 24 weeks of
OD flows and the routing matrix of the network. The traffic is measured at an interval of 5 min
and reported in the unit of 100 bytes. GEANT is a research and educational network for Europe
which is almost twice as large as Internet2. Figure 2}(b) illustrates the topology of the network.
It has 23 routers, 23 X 23 = 529 OD flows and, 37 and 23 bidirectional internal and external
links respectively. GEANT [32] is a collection of 4 months of OD flows measurements and
the routing information of the network. The corresponding link flow matrix ¥ can be obtained
using (). Traffic measurements are in unit of kpbs and were performed at an interval of 15
minutes. Note that, in both cases, the link flow matrix ¥ can be calculated using (IZ])

1

~ - 9 15 - = 8
2 /) g 9 )
. § 2 =95 / 5
P “ 4 P
5 6 Naz —~ 16
. % Al > :/
23 17 - v
8 7 N 1 s > 10
[ 4 "(/(\ 1 N
/ 7\ N f 11
1B\ \JL—
—— = AN S
) ” 6 ’( SRX
4 L) 14 g
11 6
(a) Internet2 topology (b) GEANT topology

Figure 2: (a) Internet2 topology. (b) GEANT topology. Routers are numbered green coloured circles. Links are red
coloured arrows. Only internal links are shown.

Parameter setting for experiments. For experiments on the two datasets Internet2 and GEANT,
we use the following specifications:

i) For Internet2, the initial 11 days time slots (11 = 24 = 12 = 3168 time slots) of traffic data
are used during experiments. The initial 7 days (7 = 24 = 12 = 2016 time slots) of traffic
data in this time slot are used for training, and the subsequent 4 days (4 * 24 * 12 = 1152
time slots) traffic data are used for testing. For GEANT, the three weeks of traffic data
(21 %24 % 4 = 2016 time slots) are used during experiments. The initial two weeks of traffic
data (14 * 24 * 4 = 1344 time slots) are used for training of models, and the subsequent one
week of traffic data (7 = 24 = 4 = 672 time slots) is used for testing.

ii) The factorization rank k is set to 20 for all models.
iii) The models other than the proposed model are run with their default parameters.

iv) During training MCST-NMF, the penalty parameters A, and A4 for regularization terms are
obtained using (8) by setting 8, = Ba. For Internet2, 8, = B4 = 0.2. For GEANT, g, = 0.1
and B84 = 0.1 respectively.
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v) During training MCST-NMF, the maximum number of iterations ¢”** is set to 50, while
aw', qi" and g4** are set to 10. The parameter ¢ is set to 107%, 6y and &y are set to 1073,
and &g is set to 1073,

vi) For testing MCST-NMF, AlgorithmE] parameters are set as follows: a) g4 and O, are set
to 1073 and 1077, respectively, and b) ¢"** and r"** are set to 200.

Choice of the lag set L. For training MCST-NMF using Algorithm [I] requires a lag set. We
strategically choose the lag set during experiments by keeping the general temporal behaviour
of backbone computer network in our mind i.e. a) network traffic behaviour persist for short pe-
riod of time, b) network traffic is likely to repeat its behaviour on a hourly basis, c¢) network
traffic may be similar after 8 hours at the beginning and end of working hours and d) net-
work traffic exhibit diurnal pattern. Based on the described strategy, the chosen lag sets are
£ =1{1,2,3,12,24,96,102, 108,288} and L = {1,4,8,32, 34, 36,96} for Internet2 and GEANT
respectively.

All tests are preformed using MATLAB® R2018b (Student License) under Windows 10®
environment on a laptop Intel® CORE™ i5-3YY6U768YOM CPU @2.60GHz 4GB RAM. The
code of our proposed methods is available from https://github.com/5y3datif/MCST-NMF.

4.1. Experiments on Internet2

Table 2: Statistical properties of the traffic estimation errors, SRE (@) and TRE (I0), on the test set for the Internet2 data
set. The lowest (best) values are highlighted in bold.

(a) Statistical properties of the SRE.

MCST-NMC MCST-NMF MNETME CS-DME PCA

minimum 0.07 0.05 0.07 081 007
maximum 1.36 1.34 11.86 1.03 2.37
mean 0.40 0.39 0.69 092 051
median 0.36 0.36 0.43 092 043
standard 0.25 0.25 1.23 0.03 035
deviation

(b) Statistical properties of the TRE.

MCST-NMC MCST-NMF MNETME CS-DME PCA

minimum 0.05 0.06 0.13 0.80 0.08
maximum 0.30 0.31 0.37 0.97 0.54
mean 0.18 0.18 0.26 0.91 0.30
median 0.18 0.19 0.26 0.91 0.32
standard 0.04 0.05 0.04 001 008
deviation

Let us examine the results on the Internet2 dataset to assess the performance of our two
proposed methods compared to the state of the art. Table 2] presents the statistical properties of
SRE and TRE of the different methods.
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https://github.com/5y3datif/MCST-NMF

SRE of our proposed methods, MCST-NMF and MCST-NMC, is the best in terms of the
minimum, mean, median and standard deviation with values 0.05, 0.39, 0.36 and 0.25, respec-
tively. The closest competitor in terms of the minimum, mean and median of SRE has values
larger by 40%, 31% and 19%, respectively. In terms of the maximum value of SRE, our methods
are the second best (1.34 and 1.36). Similarly, TRE of MCST-NMC and MCST-NMF have the
lowest values w.r.t. all four criteria, namely the minimum (0.05 and(0.06), maximum (0.30 and
0.31), mean (0.18 and 0.18) and median (0.18 and 0.19). Its nearest competitor with respect to
corresponding criteria has values larger by 33%, 19%, 44% and 44%, respectively.

To better visualize the differences, Figure [3] displays the cumulative distribution functions
(CDF) of the SRE and TRE of the different methods. We observe that 90% of OD flows estimated
by our proposed methods (MCST-NMC and MCST-NMF) have SRE of at most 0.74. In contrast,
the nearest competitor, PCA, has SRE of at most 0.90 for 90% of OD flows that is 21.62%
higher comparing to that of MCST-NMF. Results for the TRE for MCST-NMC and MCST-
NMF are even more striking. All the models show low TRE but 90% of OD flows estimated
by our proposed methods (MCST-NMC and MCST-NMF) has TRE of at most 0.238 and 0.242,
respectively, which is 6.7% and 5% smaller than the second best model, namely CS-DME (with
value 0.254) as shown on Figure [3b}

0.9 09"
0.8 0.8
0.7 0.7
T 06 o 06}
o« o«
€ 05 E 05
- - “—PCA
0.4 ——PCA 04r ——MNETME
03 ——MNETME | | 03 ——CS-DME
] ——CS-DME ——MCST-NMC
0.2 —v—MCST-NMC| - 0.2 MCST-NMF |
MCST-NMF /
0'1 L L L L L L 01 1 | 0-1 I I I L L
02 03 04 05 06 07 08 09 1 11 1.2 0.1 015 02 025 03 035 0.4
SRE (from lowest to highest) TRE (from lowest to highest)
(a) CDFs of SRE (b) CDFs of TRE

Figure 3: Cumulative distributed function (CDF) of SRE (left) and TRE (right) resulting from comparing traffic estima-
tion methods over Internet2.

4.1.1. Impact of the regularization parameters

This section analyzes the impact of the regularization parameters, 8, and 8.4, on the perfor-
mance of the proposed methods when tested over the Internet2 dataset. To do so, we consider
four cases by setting 8 and 8.4 to their default value 0.5 or to 0, with a total of four cases. All the
remaining parameters are kept as described in the paragraph [Parameter setting for experiments|
during all the conducted experiments. The obtained results are reported in Table[3]

We observe that our two methods have the best performance when both the regularization
terms are used. Using only one regularization term or none of the two regularization terms
deteriorate SRE and TRE upto 24% and 7% respectively. This illustrates the effectiveness of the
two regularization terms. Note that the case 8, = 0 represent the case where the lag set £ = 0
which has a significant impact on the TRE; see Table 3]
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Table 3: Impact of the regularization parameters with respect to SRE and TRE for the Internet2 dataset. Lowest values
are in bold.

SRE TRE
MCST-NMF MCST-NMC MCST-NMF MCST-NMC
Br=05,4=05 0.73 0.73 0.187 0.186
Br=0.5,64=0.0 0.76 0.76 0.232 0.230
Br=0.0,84=05 0.76 0.77 0.227 0.216
Br=0.0,64=0.0 0.78 0.78 0.216 0.216

4.2. Experiment on GEANT

We now perform the same results as for Internet2 on the GEANT data set. Table 4| presents
the values of SRE and TRE for the different methods.

Table 4: Statistical properties of SRE and TRE for PCA, MNETME, CS-DME and MCST-NMF over GEANT test data.
Lowest values are in bold.

(a) Statistical properties of SRE

MCST-NMC MCST-NMF MNETME CS-DME PCA

minimum 0.00 0.00 0.00 0.12 0.02
maximum 23 46 59 30 37
mean 5.71 14.21 14.87 2.53 10.47
median 0.82 0.86 0.87 1.27 0.91
standard 6.84 22.34 14.76 375 86.99
deviation

(b) Statistical properties of TRE

MCST-NMC MCST-NMF MNETME CS-DME PCA

minimum 0.05 0.05 0.06 0.41 0.06
maximum 0.26 0.26 0.60 1.13 0.38
mean 0.09 0.09 0.13 0.64 0.12
median 0.08 0.08 0.10 0.61 0.11
standard 0.03 0.03 0.10 0.12 005
deviation

The SRE of our proposed methods is the best in terms of the median. Moreover, the matrix
completion variant of our proposed model, MCST-NMC, is the best in terms of all criteria except
except for the mean and standard deviation. The closest competitors of MCST-NMC in terms
of the minimum, maximum and median of SRE has values larger by 0%, 30% and 4.87%, re-
spectively. The TREs of our proposed methods are the same. The closest competitor in terms of
the minimum, maximum, mean, median and standard deviation has value larger by 20%, 46%,
33%, 25% and 66%, respectively. To further illustrate the differences, Figure E] shows the cumu-
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lative distribution functions (CDF) of the different methods. We observe that 80% of OD flows
estimated by our proposed methods, MCST-NMC and MCST-NMF, have SRE of value at most
1.02 and 1.04, respectively. The second best performing model (MNETME) has SRE of at most
1.1 for 80% of OD flows. This value is larger by 8% compared to MCST-NMC; see Figure 4a]
Results of TRE for MCST-NMC and MCST-NMF are very similar. All the models show low
TRE but 90% of OD flows estimated by MCST-NMC and MCST-NMF have TRE of at most
0.12 whereas the second best model, PCA, has TRE of at most 0.15 for 90% of OD flows. This
value is larger by 25%; see Figure [4b]

—@&—PCA —@&—PCA

0.3 —+— MNETME 03 —+— MNETME

r —4— CS-DME —4— CS-DME
0.2 MCST-NMF | 1 0.2 MCST-NMF |

—&— MCST-NMC —<— MGST-NMC
0.1
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 12 125 1.3 0.08 0.08 0.1 0.12 0.14 0.16 0.18
SRE (from lowest to highest) TRE (from lowest to highest)
(a) CDFs of SRE (b) CDFs of TRE

Figure 4: Cumulative distributed function (CDF) of SRE (left) and TRE (right) resulting from comparing traffic es-
timation models over GEANT test data. (On the right plot, the TRE of the two proposed variants, MCST-NMF and
MCST-NMC, overlap.)

4.2.1. Impact of the regularization parameters

This section analyzes the impact of the regularization parameters, 8, and 84 on the per-
formance of proposed solutions when tested over GEANT dataset, exactly as for the Internet2
dataset. Table[5|reports the values of the SRE and TRE for the different values of the regulariza-
tion parameters.

Table 5: Impact of the regularization parameters with respect to SRE and TRE over GEANT. Lowest values are in bold.

cases SRE TRE
MCST-NMF MCST-NMC MCST-NMF MCST-NMC

By =05,p4=05 1.20 1.12 0.124 0.121

By =0.5, Bz = 0.0 1.27 1.21 0.125 0.123

B =0.0,B4=0.5 4.68 1.70 0.124 0.121

B = 0.0, Bz = 0.0 425 1.80 0.124 0.121

We observe that both proposed methods exhibit the best performance when the regularization
terms are used. This is particularly true for the SRE, with a significant deterioration for both
methods; namely from 1.20 to 4.25 for MCST-NMF, and from 1.12 to 1.80 for MCST-NMC.

18



Moreover, we observe that the use of the lag set is particularly important to have low SRE values,
as using B, = 0 significantly impacts the SRE.

5. Conclusion

In this paper, we have proposed an NMF-based approach to tackle the network traffic flow
estimation problem. To the best of our knowledge, it is the first time NMF is used for this specific
task. A notable shortcoming of previously explored dimensionality-reduction approaches (e.g.,
based on PCA) was to solve these problems by ignoring the nonnegativity constraints. Moreover,
our approach uses two regularizers, namely orthogonality to better cluster the data, and autore-
gression to take the temporal correlations into account, which further improves its performance.

We proposed their two different variants of our model: (1) MCST-NMF that is most suit-
able when the training dataset does not have missing entries, and (2) MCST-NMC that is de-
signed specifically to handle missing entries. We have shown on two real-world data sets, namely
GEANT and Internet2, that our methods outperform existing techniques based on linear dimen-
sionality reduction.

Further Works. Recently, deep matrix factorization models have emerged; in particular deep
NMF has been shown to be able to capture several layers of meaningful features; see, e.g., [45]
46, 47]. It would be interesting to adapt our NMF based traffic matrix estimation model into a
deep NMF model. Other directions of research include the use of other NMF models to perform
the traffic flow estimation, such as [48] 49|, or to improve prediction using data coming from
other sources than the traffic flows and then use multi-view techniques such as [21}50].
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